The American College of Radiology, with more than 30,000 members, is the principal organization of radiologists, radiation oncologists, and clinical medical physicists in the United States. The College is a nonprofit professional society whose primary purposes are to advance the science of radiology, improve radiologic services to the patient, study the socioeconomic aspects of the practice of radiology, and encourage continuing education for radiologists, radiation oncologists, medical physicists, and persons practicing in allied professional fields.

The American College of Radiology will periodically define new practice guidelines and technical standards for radiologic practice to help advance the science of radiology and to improve the quality of service to patients throughout the United States. Existing practice guidelines and technical standards will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated.

Each practice guideline and technical standard, representing a policy statement by the College, has undergone a thorough consensus process in which it has been subjected to extensive review, requiring the approval of the Commission on Quality and Safety as well as the ACR Board of Chancellors, the ACR Council Steering Committee, and the ACR Council. The practice guidelines and technical standards recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guideline and technical standard by those entities not providing these services is not authorized.

ACR PRACTICE GUIDELINE FOR THE PERFORMANCE OF THE MUSCULOSKELETAL ULTRASOUND EXAMINATION

PREAMBLE

These guidelines are an educational tool designed to assist practitioners in providing appropriate radiologic care for patients. They are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care. For these reasons and those set forth below, the American College of Radiology cautions against the use of these guidelines in litigation in which the clinical decisions of a practitioner are called into question.

The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by the physician or medical physicist in light of all the circumstances presented. Thus, an approach that differs from the guidelines, standing alone, does not necessarily imply that the approach was below the standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in the guidelines when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources, or advances in knowledge or technology subsequent to publication of the guidelines. However, a practitioner who employs an approach substantially different from these guidelines is advised to document in the patient record information sufficient to explain the approach taken.

The practice of medicine involves not only the science, but also the art of dealing with the prevention, diagnosis, alleviation, and treatment of disease. The variety and complexity of human conditions make it impossible to always reach the most appropriate diagnosis or to predict with certainty a particular response to treatment. Therefore, it should be recognized that adherence to these guidelines will not assure an accurate diagnosis or a successful outcome. All that should be expected is that the practitioner will follow a reasonable course of action based on current knowledge, available resources, and the needs of the patient to deliver effective and safe medical care. The sole purpose of these guidelines is to assist practitioners in achieving this objective.

I. INTRODUCTION

The clinical aspects contained in specific sections of this guideline (Introduction, Imaging Protocols, Specifications of the Examination, and Equipment Specifications) were developed collaboratively by the American College of Radiology (ACR) and the American Institute of Ultrasound in Medicine (AIUM). Recommendations for physician requirements, written request for the examination, procedure documentation, and quality control vary between the two organizations and are addressed by each separately.

This guideline has been developed to assist practitioners performing a musculoskeletal (MSK) ultrasound (US) examination. While it is not possible to detect every abnormality, adherence to the following guidelines will maximize the probability of detecting most abnormalities that occur.

II. QUALIFICATIONS AND RESPONSIBILITIES OF PERSONNEL

See the ACR Practice Guideline for Performing and Interpreting Diagnostic Ultrasound Examinations.
III. WRITTEN REQUEST FOR THE EXAMINATION

The written or electronic request for musculoskeletal ultrasound should provide sufficient information to demonstrate the medical necessity of the examination and allow for its proper performance and interpretation.

Documentation that satisfies medical necessity includes 1) signs and symptoms and/or 2) relevant history (including known diagnoses). Additional information regarding the specific reason for the examination or a provisional diagnosis would be helpful and may at times be needed to allow for the proper performance and interpretation of the examination.

The request for the examination must be originated by a physician or other appropriately licensed health care provider. The accompanying clinical information should be provided by a physician or other appropriately licensed health care provider familiar with the patient’s clinical problem or question and consistent with the state scope of practice requirements. (ACR Resolution 35, adopted in 2006)

IV. SUPERVISION AND INTERPRETATION OF ULTRASOUND EXAMINATIONS

A physician must be available for consultation with the sonographer on a case-by-case basis. Ideally the physician should be on-site and available to participate actively in the US examination when required. It is recognized, however, that geographic realities may not permit the presence of an on-site physician in all locations. In this case, the physician should visit the facility on a regular basis to provide on-site review of US procedures and sonographer supervision.

V. SPECIFICATIONS FOR INDIVIDUAL EXAMINATIONS

Depending on the clinical request and the patient’s presentation, the US examination can involve a full assessment of a joint or it can be tailored to a specific region of interest. If a limited study is performed, it is essential to have a full understanding of the relevant abnormalities, including those that may mimic the patient’s symptoms.

General US scanning principles apply. Axial and longitudinal views should always be obtained with the transducer perpendicular to the axis of the region of interest to minimize artifact. Abnormalities should be measured in both planes. Graded compression of soft tissues should be employed for a complete assessment.

A. The Shoulder

1. Indications for a shoulder US examination
 The indications for US of the shoulder include, but are not limited to, evaluation of shoulder pain or dysfunction.

2. Specifications of the shoulder examination
 Patients should be examined in the sitting position, preferably on a rotating seat. Examination of the shoulder should be tailored to the patient’s clinical circumstances and range of motion.

 The biceps tendon should be examined with the forearm in supination and resting on the thigh or with the arm in slight external rotation. The tendon is examined in a transverse plane (short axis), where it emerges from under the acromion, to the musculotendinous junction distally. Longitudinal views (long axis) should also be obtained. These views should be used to determine if the tendon is properly positioned within the bicipital groove, subluxated, dislocated, or torn.

 To examine the subscapularis tendon, the elbow remains at the side while the arm is placed in external rotation. Both transverse (long axis) and sagittal (short axis) views should be obtained. Dynamic evaluation as the patient moves from internal to external rotation may be helpful.

 To examine the supraspinatus tendon, the arm can be extended posteriorly, and the palmar aspect of the hand can be placed against the superior aspect of the iliac wing with the elbow flexed and directed toward midline (instruct patient to place the hand in the back pocket). Other positioning techniques also may be helpful.

 To scan the supraspinatus and infraspinatus tendons along their long axis, it is important to orient the transducer approximately 45 degrees between the sagittal and coronal planes to obtain a longitudinal view. The transducer then should be moved anteriorly and posteriorly to completely visualize the tendons.

 Transverse views of the tendons should be obtained by rotating the probe 90 degrees to the long axis. The tendons are visualized by sweeping medially to the acromion and laterally to their insertions on the greater tuberosity. The more posterior aspect of the infraspinatus and teres minor tendons should be examined by...
placing the transducer at the level of the glenohumeral joint below the scapular spine while the forearm rests on the thigh with the hand supinated. Internal and external rotation of the arm is helpful in identifying the infraspinatus muscle and its tendon and in detecting small joint effusions.

To visualize the teres minor tendon, the probe should be angled slightly inferiorly. Throughout the examination of the rotator cuff, the cuff should be compressed to detect nonretracted tears. In the evaluation of rotator cuff tears, comparison with the contralateral side may be useful.

While examining the rotator cuff, it is also important to evaluate for bursal thickening, effusion, loose bodies, tendon calcification, and muscle and bony abnormalities. If symptoms warrant, the acromioclavicular joint, the supraspinatus notch, and the spinoglenoid notch also may be evaluated. Dynamic evaluation of the rotator cuff also is useful, for example to evaluate the rotator cuff for impingement or assess cuff tear extent.

B. The Elbow

1. Indications for an elbow examination

The indications for US of the elbow include, but are not limited to, soft tissue injury, tendon pathology (including tendonopathy, enthesisopathy and tear), ligament pathology, arthritis, loose bodies, soft tissue masses, nerve entrapment, effusion, and bone injury.

2. Specifications of an elbow examination

Patient is seated with the arm extended and the hand in supination, resting on a table, and the examiner sitting in front of the patient. The elbow may also be examined with the patient supine and the examiner on the same side as the elbow of interest. The examination is divided into 4 quadrants: anterior, medial, lateral, and posterior. The examination may be tailored to a specific site depending on the clinical presentation.

a. Anterior
The anterior joint space and other recesses of the elbow are assessed for effusion, synovial proliferation, and loose bodies. Longitudinal and axial scanning of the anterior humeroradial and humeroulnar joints and coronoid and radial fossae is performed to assess the articular cartilage and cortical bone. The annular recess of the neck of the radius is scanned dynamically with the patient alternatively supinating and pronating the forearm. The same dynamic assessment can be made for the biceps tendon and its attachment to the radial bicipital tuberosity. The brachialis muscle, the adjacent radial and brachial vessels, and the median and radial nerves complete the anterior scan.

b. Lateral
The patient extends the arm and places both palms together, or if the patient is supine the forearm is placed across the abdomen. This position allows assessment of the lateral epicondyly and the attachments of the common extensor tendon, as well as the more proximal attachments of the extensor carpi radialis longus and brachioradialis. The hand is then pronated with the transducer on the posterolateral aspect of the elbow to scan the radial collateral ligament.

c. Medial
The hand is placed in supination and the medial epicondyle, common flexor tendon, and ulnar collateral ligament are scanned in both planes. The ulnar nerve is visualized in the cubital tunnel between the olecranon process and medial epicondyly. Dynamic examination with flexion and extension of the elbow is performed to assess dynamic subluxation of the ulnar nerve. Dynamic examination with valgus stress is performed to assess integrity of the ulnar collateral ligament. During stress testing, the elbow must be slightly flexed to disengage the olecranon from the olecranon fossa.

d. Posterior
The palm is placed down on the table, or if the patient is supine the forearm is placed across the abdomen, with the elbow flexed to 90 degrees. The posterior joint space, triceps tendon, olecranon process and olecranon bursa are assessed.

C. The Wrist and Hand

1. Indications for a wrist and hand examination

The indications for US of the wrist and hand include, but are not limited to, soft tissue injury, tendon pathology (tendonopathy, tenosynovitis,
tissue masses or swelling (including ganglion cysts), nerve entrapment, effusion, foreign bodies, and bone injury. This examination is usually tailored to the clinical presentation.

2. Specifications of the wrist and hand examination

The patient sits with hands resting on a table placed anteriorly or on a pillow placed on the patient’s thighs. The volar examination requires the wrists to be placed flat or in mild dorsiflexion with palm up, and during both ulnar and radial deviation to delineate all the necessary anatomy. The dorsal scan requires the wrist to be placed palm down with mild volar flexion.

a. Volar
 Axial and longitudinal images should be obtained from the volar wrist crease to the thenar muscles. The transducer will require angulation to compensate for the normal contour of the wrist. The flexor retinaculum, flexor digitorum profundus and superficialis tendons, and the adjacent flexor pollicis longus tendon are identified within the carpal tunnel. Dynamic imaging with flexion and extension of the fingers will demonstrate normal motion of these tendons. The median nerve lies superficial to these tendons and deep to the flexor retinaculum, and it moves with the tendons but with less amplitude on dynamic imaging. The distal end of the median nerve is tapered and divides into the distal divisions for the hand. The palmaris longus tendon lies superficial to the retinaculum. On the radial side of the wrist, the flexor carpi radialis longus tendon lies within its own canal. It is important to evaluate the region of the flexor carpi radialis and the radial artery for occult ganglion cysts, which typically originate from the radiocarpal joint capsule. On the ulnar side, branches of the ulnar nerve and artery lie within Guyon’s canal. The flexor carpi ulnaris tendon borders the ulnar aspect of Guyon’s canal. All of the tendons can be followed to their sites of insertion if clinically indicated.

b. Ulnar
 Placing the transducer axially on the ulnar styloid and moving distally will allow visualization of the triangular fibrocartilage (TFC) in its long axis. The transducer is then moved 90 degrees to view the short axis of the TFC. The meniscus homologue lies distal to the triangular fibrocartilage and deep to the extensor carpi ulnaris tendon. This tendon should be viewed in supination and pronation to assess subluxation.

c. Dorsal
 Structures are very superficial on the dorsal surface, and a high frequency transducer is required with or without the use of a standoff pad. The extensor retinaculum divides the dorsal aspect of the wrist into 6 compartments, which accommodate 9 tendons. These are examined axially initially and then longitudinally in static and dynamic mode, the latter being performed with flexion and extension of the fingers. The tendons can be followed to their sites of insertion where clinically indicated. Moving the transducer axially distal to Lister’s tubercle identifies the dorsal aspect of the scapholunate ligament, a site of symptomatic ligament tears and ganglion cysts. The remaining intercarpal ligaments are not routinely assessed. In patients with suspected inflammatory arthritis, the metacarpophalangeal joints and, if symptomatic, the proximal interphalangeal joints are evaluated from the volar and dorsal aspects in both the longitudinal and axial planes for effusion, synovial hypertrophy, and bony erosions. Color and power Doppler may be useful in detecting synovial hyperemia. Other joints of the wrist and hand are similarly evaluated as clinically indicated.

D. The Hip

1. Adult hip
 a. Indications for a hip examination
 The indications for US of the adult hip include, but are not limited to, soft tissue injury, tendon pathology, arthritis, soft tissue masses or swelling, nerve entrapment, effusion, and bone injury.

 b. Specifications of a hip examination
 Depending on the patient’s habitus, a lower frequency transducer may be required to scan the hip. Because the spatial resolution decreases with a decrease in the transducer frequency, the operator should use the highest possible frequency that provides adequate penetration. The patient is placed supine with the hip in mild external rotation. Anterior, posterior, medial and lateral approaches are performed. The examination may be tailored to a specific site depending on the clinical presentation.
i. Anterior
A sagittal oblique plane parallel to the long axis of the femoral neck is used for evaluation of the femoral head, neck, and joint effusion. The sagittal plane is used for the labrum, the iliopsoas tendon and bursa, the femoral vessels, and the sartorius and rectus femoris muscles. The above structures are then scanned in the axial plane, perpendicular to the original scan plane. When a “snapping hip” is suspected, dynamic scanning is performed over the region of interest employing the same movement that the patient describes as precipitating the complaint. The “snapping hip” is usually related to the iliopsoas tendon as it passes anteriorly over the superior pubic bone or laterally where the iliotibial tract crosses the greater trochanter.

ii. Lateral
In the lateral decubitus position, with the symptomatic side up, axial and longitudinal scans of the greater trochanter, greater trochanteric bursa, gluteus medius, gluteus maximus, gluteus minimus, and tensor fascia lata should be performed. An iliotibial tract that snaps over the greater trochanter can be assessed in this position using dynamic flexion-extension.

iii. Medial
The hip is placed in external rotation with 45-degree knee flexion (frog-leg position). The distal iliopsoas tendon, due to its oblique course, may be better seen in this position. The adductor muscles are imaged in the sagittal oblique orientation, with axial images obtained perpendicular to this plane. In addition, the pubic bone and symphysis and the distal rectus abdominis insertion should be evaluated.

iv. Posterior
The patient is prone with the legs extended. Axial and longitudinal views of the glutei, hamstrings, and sciatic nerve are obtained. The glutei are imaged obliquely from origin to greater trochanter (gluteus medius and minimus) and linea aspera (gluteus maximus). The sciatic nerve is scanned axially from its exit at the greater sciatic foramen, deep to the gluteus maximus. It can be followed distally, midway between the ischial tuberosity and the greater trochanter, lying superficial to the quadratus femoris muscle.

2. Prosthetic hip

a. Indications for a prosthetic hip examination
Assess for joint effusions and extra-articular fluid collections, often as part of an US-guided procedure for fluid aspiration in the clinical scenario of prosthetic joint infection.

b. Specifications of a prosthetic hip examination
Anterior and lateral approaches, as described above, can be used to measure joint effusion at prosthesis-bone junction and detect fluid in the greater trochanteric and iliopsoas bursae.

3. Neonatal or pediatric hip

See the ACR Practice Guideline for the Performance of the Ultrasound Examination for Detection of Developmental Dysplasia of the Hip.

E. The Knee

1. Indications for a knee examination
The indications for US of the knee include, but are not limited to, soft tissue injury, tendon and collateral ligament pathology, arthritis, soft tissue masses or swelling, loose intra-articular bodies, effusion, and bone injury.

2. Specifications of a knee examination
The examination is divided into 4 quadrants. Either a comprehensive structured examination of the whole knee or a limited study tailored to the clinical presentation is performed.

a. Anterior
The patient is supine with knee flexed to 30 degrees. Longitudinal and axial scans of the quadriceps and patellar tendons, patellar retinaculum, and suprapatellar recess are obtained. If clinically indicated the patella is also scanned to assess for an occult injury. The distal femoral cartilage can be assessed with the probe placed in the suprapatellar space in the axial plane and with the knee in maximal flexion. Longitudinal views of the cartilage over the medial and lateral femoral condyles are added as indicated. The
prepatellar, superficial, and deep infra-patellar bursae are also evaluated. The distal or tibial aspect of the anterior cruciate ligament may be visualized inserting into the anteromedial tibial plateau with the knee in maximum flexion and the transducer in the longitudinal plane of the ligament.

b. Medial
The patient remains supine with slight flexion of the knee and hip and with slight external rotation of the hip. Alternatively, the patient may be placed in the lateral decubitus position. The medial joint space is examined. The medial collateral ligament, the pes anserine tendons and bursa, and the medial patellar retinaculum are scanned in both planes. The anterior horn and body of the medial meniscus may be identified in this position, particularly with valgus stress. If meniscal pathology is suspected either clinically or by US, further imaging with MRI is advised.

c. Lateral
The patient remains supine with the ipsilateral leg internally rotated or in a lateral decubitus position. A pillow may be placed between the knees for comfort. From posterior to anterior the popliteus tendon, biceps femoris tendon, fibular collateral ligament, and iliotibial band and bursa are scanned. The lateral patellar retinaculum can also be assessed in this position (as well as in the anterior position). The joint line is scanned for meniscal pathology or cysts.

d. Posterior
The patient lies prone with the leg extended. The popliteal fossa, semimembranosus, medial and lateral gastrocnemius muscles, tendons, and bursae are assessed. To confirm the diagnosis of a popliteal cyst, the comma shaped extension toward the posterior joint has to be visualized sonographically in the posterior axial scan between the medial head of gastrocnemius and semimembranosus tendon. In addition, the posterior horns of both menisci can be evaluated. The posterior cruciate ligament may be identifiable in a sagittal oblique plane in this position. Evaluation of the intercondylar region of the femur in the transverse plane can evaluate for injury to the anterior cruciate ligament, although magnetic resonance imaging (MRI) should be considered for this indication.

F. The Ankle and Foot

1. Indications for an ankle and foot examination

The indications for US of the ankle and foot include, but are not limited to, soft tissue, tendon, and ligament injury, arthritis, soft tissue masses or swelling, intra-articular loose bodies, effusion, bone injury, Morton’s neuroma, plantar faciitis and foreign bodies.

2. Specifications of an ankle and foot examination

US examination of the ankle is divided into 4 quadrants (anterior, medial, lateral and posterior) and is usually tailored to the clinical presentation. Examination of the foot is also tailored to the clinical presentation (for example, assessment of joints for synovitis, plantar fascia for fasciitis, mass for Morton’s neuroma or ganglion cyst).

a. Anterior
The patient lies supine with the knee flexed and the plantar aspect of the foot flat on the table. The anterior tendons are assessed in longitudinal and axial planes from their musculotendinous junctions to their distal insertions. From medial to lateral, this tendon group includes the tibialis anterior, extensor hallucis longus, extensor digitorum longus, and peroneus tertius tendons (the latter being congenitally absent in some patients). The anterior joint recess is scanned for effusion, loose bodies, and synovial thickening. The anterior joint capsule is attached to the anterior tibial margin and the neck of the talus, and the hyaline cartilage of the talus appears as a thin hypoechoic line. The anterior tibio-fibular ligament is assessed by moving the transducer proximally over the distal tibia and fibula, superior and medial to the lateral malleolus, and scanning in an oblique axial plane.

b. Medial
The patient maintains the same position as the anterior examination. The posterior tibial, flexor digitorum longus, and flexor hallucis longus tendons (located in this order from anterior to posterior) are initially scanned axially proximal to the medial malleolus to identify each tendon. They are assessed in longitudinal and axial planes from their proximal musculotendinous junctions in the supramalleolar region to their distal insertions. To avoid anisotrophy,
the angulation of the transducer must be adjusted continuously to remain perpendicular to the tendons as they curve under the medial malleolus. The same holds true when assessing the lateral aspect of the ankle, as described below. The tibial nerve can be scanned by identifying it between the flexor digitorum tendon anteriorly and the flexor hallucis longus tendon posteriorly, at the level of the malleolus. The nerve can then be followed proximally and distally. The flexor hallucis longus may also be scanned in the posterior position, medial to the Achilles tendon. The deltoid ligament is scanned longitudinally from its attachment to the medial malleolus to the navicular, talus, and calcaneus.

c. Lateral
The patient is supine with the knee flexed and the plantar aspect of the foot on the table with slight inversion. The peroneus brevis and longus tendons are identified proximal to the lateral malleolus on axial scan, and they can then be assessed in longitudinal and axial planes from their proximal (supramalleolar) musculotendinous junctions to their distal insertions. The peroneus longus can be followed in this manner to the cuboid groove where it turns to course medially along the planter aspect of the foot to insert on the base of the first metatarsal and medial cuneiform. This latter aspect of the tendon can be scanned in the prone position, as described below. The peroneus brevis tendon is followed to its insertion on the base of the fifth metatarsal. The peroneus brevis and longus tendons are assessed for subluxation using real time images with dorsiflexion and eversion. The lateral ligament complex is examined by placing the transducer on the tip of the lateral malleolus in the following orientations: anterior and posterior horizontal oblique for the anterior and posterior talofibular ligaments, and posterior vertical oblique for the calcaneofibular ligament.

d. Posterior
The patient is prone with feet extending over the end of the table. The Achilles tendon is scanned in the longitudinal and axial planes from the musculotendinous junctions (medial, and lateral heads of the gastrocnemius and soleus muscles) to the site of insertion on the posterior surface of the calcaneus. Dynamic scanning with plantar and dorsiflexing may aid in the evaluation of tears. The plantaris tendon lies along the medial aspect of the Achilles tendon and inserts on the posteromedial calcaneus. It should be noted that this tendon may be absent as a normal variant but is often intact in the setting of a full-thickness Achilles tendon tear. The retrocalcaneal bursa, between the Achilles and superior calcaneus, is also assessed. The plantar fascia is scanned in both planes from its proximal origin on the medial calcaneal tubercle distally where it divides and merges into the soft tissues.

e. Digital
In patients with suspected inflammatory arthritis, the metatarsophalangeal joints and, if symptomatic, the proximal interphalangeal joints, are evaluated from the plantar and dorsal aspects in both the longitudinal and axial planes for effusion, synovial hypertrophy, synovial hyperemia, and bony erosions. Other joints of the foot are similarly evaluated as clinically indicated.

f. Interdigital
The patient is supine with the foot dorsiflexed 90 degrees to the ankle. Either a dorsal or plantar approach can be used. The latter will be described here. The transducer is placed longitudinally on the plantar aspect of the first interdigital space, and the examiner applies digital pressure on the dorsal surface. The transducer is moved laterally with its center at the level of the metatarsal heads. The process is repeated for the remaining interspaces and then repeated axially. When a Morton's neuroma is clinically suspected, pressure can be applied to reproduce the patient’s symptoms. The intermetatarsal bursa lies on the dorsal aspect of the interdigital nerve, and care must be taken to correctly identify a neuroma and differentiate it from the bursa.

G. Peripheral Nerves
1. Indications for a peripheral nerve examination
The indications for a peripheral nerve examination include, but are not limited to, compression neuropathies, neuritis, nerve masses, nerve trauma, and nerve subluxation.
Specifications of a peripheral nerve examination

Nerves have a fascicular pattern with hypoechoic longitudinal neuronal fascicles interspersed with hyperechoic interfascicular endoneurium. In addition, they have a hyperechoic superficial epineurium. As a nerve bifurcates each fascicle enters one of the subdivisions without splitting. Nerves course adjacent to vessels and are readily distinguished from the surrounding tendons with a dynamic examination, during which the nerve demonstrates relatively little movement compared to the adjacent tendons. Nerves may become more hypoechoic as they pass through fibro-osseous tunnels, as the fascicles become more compact. Examination in the axial plane is usually preferred to assess the course of the nerve, as it may be difficult to separate the nerve itself from the surrounding tendons and muscles on a longitudinal scan. Assessment at the level of fibro-osseous tunnels requires dynamic examination. A statically dislocated nerve is readily identifiable on US, but an intermittently subluxating nerve requires dynamic examination. Perhaps the most commonly subluxating nerve is the ulnar nerve within the cubital tunnel (see posterior elbow examination). Entrapment neuropathies also typically occur within fibro-osseous tunnels, (e.g., cubital and Guyon tunnels for the ulnar nerve, carpal tunnel for the median nerve, fibular neck for the common peroneal nerve, and the tarsal tunnel for the tibial nerve). Adjacent pathology of tendons, soft tissues, and bone can be readily evaluated to determine the potential underlying cause of the nerve dysfunction. In addition, congenital abnormalities, (e.g., accessory muscles or vessels) can be assessed.

H. Soft Tissue Mass

1. Indications for a soft tissue mass examination

The indications for a soft tissue mass examination include, but are not limited to, determining the cystic or solid nature of a mass as well as its size, vascularity, margins, and relationship to adjacent structures.

2. Specifications of a soft tissue mass examination

The mass should be scanned in both longitudinal and axial planes. US is an excellent method for differentiating solid from cystic masses. The mass should be measured in 3 orthogonal planes and its relationship to surrounding structures, determined particularly to joints, neurovascular bundles and tendons. Compressibility of the lesion should be evaluated. Color or power Doppler evaluation may help to delineate intra- and extralesional vessels and vascularity of the mass.

I. Interventional Musculoskeletal Ultrasound

1. Indications for interventional musculoskeletal US

The indications for interventional musculoskeletal US include, but are not limited to, aspiration of cysts, fluid collections and abscesses, arthrocentesis, insertion of drainage catheters, US-guided biopsy, medicinal injections, intra-articular injection of contrast (prior to computed tomography (CT) or MRI), lavage and aspiration of tendon calcifications, and foreign body retrieval.

2. Specifications of interventional musculoskeletal ultrasound

US is an ideal imaging modality for image guidance of interventional procedures within the MSK system. The usual standards for interventional procedures apply (i.e., review prior imaging, appropriate consent, local anesthetic, sterile conditions). The use of a sterile drape that surrounds the prepped site, a sterile US probe cover, and sterile gloves will lower risk of contamination and infection. US provides direct visualization of the needle, monitors the needle pathway, and shows the position of the needle within the target area. Direct visualization of the needle allows the practitioner to avoid significant intralesional and extralesional vessels, adjacent nerves, or other structures at risk.

Prior to any procedure, a thorough US examination to characterize the target area and its relationship to surrounding structures is performed. Color or power Doppler is useful to delineate any vessels within the target zone. Ideally the shortest pathway to the region of interest should be selected, with consideration given to regional neurovascular structures. The transducer is aligned in the same longitudinal plane as the needle. The needle can be attached directly to the transducer or held free hand. Either way, the needle is visualized throughout the procedure. Slight to and fro movement or injection of a small amount of sterile saline or air may be beneficial in visualizing the needle. In cases of biopsy, focal areas of vascularity indicate viable tissue for pathological examination.
J. Ultrasound of Foreign Bodies in Superficial Soft Tissue

1. Indications for detection of foreign bodies in superficial soft tissues by US

Ultrasound is helpful for detection and localization of foreign bodies, especially nonradiopaque foreign bodies such as wood, plastic, and certain types of glass.

2. Specifications for US examination for detection of foreign bodies

Most foreign bodies are associated within acoustic shadow or comet tail artifact. Once a foreign body is detected, US can be used to demonstrate its relationship to adjacent structures. In addition to a high frequency linear array transducer, detection of foreign bodies in superficial subcutaneous tissues may require a standoff pad.

VI. DOCUMENTATION

Reporting should be in accordance with ACR Practice Guideline for Communication of Diagnostic Imaging Findings.

Adequate documentation is essential for high-quality patient care. There should be a permanent record of the ultrasound examination and its interpretation. Comparison with prior relevant imaging studies may prove helpful. Images of all appropriate areas, both normal and abnormal, should be recorded. Variations from normal size should generally be accompanied by measurements. Images should be labeled with the patient identification, facility identification, examination date, and the side (right or left) of the anatomic site imaged. An official interpretation (final report) of the ultrasound examination should be included in the patient’s medical record. Retention of the ultrasound examination images should be consistent both with clinical need and with relevant legal and local healthcare facility requirements.

VII. EQUIPMENT SPECIFICATIONS

Musculoskeletal US should be performed with high-resolution linear array transducers with a broad bandwidth. Frequencies between 7.5 and 12 MHz are generally preferred with frequencies lower and higher required for deep and very superficial structures respectively. Transducers with a small footprint should be used in assessing smaller structures, (e.g., interphalangeal joints). Linear array transducers accentuate anisotropy due to the lack of divergent beam geometry. Color and power Doppler are valuable in assessing hyperemia in inflammatory or reparative tissue, determining the vascularity of a soft tissue mass, differentiating cystic lesions from vessels, and assisting in US-guided biopsy and aspiration. Doppler frequencies should be set to optimize flow detection. Tissue harmonic imaging, compound imaging, and extended field of view are recent advancements that may be useful in musculoskeletal US.

VIII. QUALITY CONTROL AND IMPROVEMENT, SAFETY, INFECTION CONTROL, AND PATIENT EDUCATION

Policies and procedures related to quality, patient education, infection control, and safety should be developed and implemented in accordance with the ACR Policy on Quality Control Improvement, Safety, Infection Control, and Patient Education Concerns appearing elsewhere in the ACR Practice Guidelines and Technical Standards book.

Equipment performance monitoring should be in accordance with the ACR Technical Standard for Diagnostic Medical Physics Performance Monitoring of Real Time Ultrasound Equipment.

ACKNOWLEDGEMENTS

This guideline was developed according to the process described in the ACR Practice Guidelines and Technical Standards book by the ACR Guidelines and Standards Committee of the Commission on Ultrasound in collaboration with the American Institute of Ultrasound in Medicine (AIUM).

Principal Drafter: Levon Nazarian, MD

Collaborative Subcommittee

ACR
Carolyn M. Sofka, MD
Sharlene A. Teeffey, MD

AIUM
Levon Nazarian, MD, Chair
Jon A. Jacobson, MD
Marnix van Holsbeeck, MD
Jay Smith, MD

ACR Guidelines and Standards Committee
Gretchen A. Gooding, MD, Chair
Raymond E. Bertino, MD
Mary C. Frates, MD
Ruth B. Goldstein, MD
Beatrice L. Madrazo, MD
Jon W. Meilstrup, MD
Michelle L. Melany, MD
Miriam N. Mikhail, MD
Canadian Association of Radiologists.

*Guidelines and standards are published annually with an effective date of October 1 in the year in which amended, revised or approved by the ACR Council. For guidelines and standards published before 1999, the effective date was January 1 following the year in which the guideline or standard was amended, revised, or approved by the ACR Council.

Development Chronology for this Guideline
2007 (Resolution 29)